y^2/(0.1)=4.0*10^-9

Simple and best practice solution for y^2/(0.1)=4.0*10^-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y^2/(0.1)=4.0*10^-9 equation:



y^2/(0.1)=4.0*10^-9
We move all terms to the left:
y^2/(0.1)-(4.0*10^-9)=0
We add all the numbers together, and all the variables
y^2/(0.1)-9-4.0E=0
We multiply all the terms by the denominator
y^2-9*(0.1)-(4.0E)*(0.1)=0
We add all the numbers together, and all the variables
y^2-9*(0.1)-(10.873127313836)*(0.1)=0
We add all the numbers together, and all the variables
y^2-1.9873127313836=0
a = 1; b = 0; c = -1.9873127313836;
Δ = b2-4ac
Δ = 02-4·1·(-1.9873127313836)
Δ = 7.9492509255344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{7.9492509255344}}{2*1}=\frac{0-\sqrt{7.9492509255344}}{2} =-\frac{\sqrt{}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{7.9492509255344}}{2*1}=\frac{0+\sqrt{7.9492509255344}}{2} =\frac{\sqrt{}}{2} $

See similar equations:

| 5y-6=180 | | 2x/3+4=5x | | 56+n=97;n= | | 9x+12=13-4 | | 0.5x=14;x= | | 5(,x+3)-3(x-2)=35 | | 22-w*w=A | | -2.4=(7.5-3x) | | 0=-5x+34 | | X(x+7)=330 | | 0.3(x+1.1)+1.1x=0.8(x-0.8)+4.99 | | (5-10j)/(2+4j)=0 | | 15/y=21/30 | | 90=300x.30xT | | 0=3x^2+4x+1= | | 6-5=x | | -w*w=22 | | 0.09w=18 | | (-1+2j)*(3-2j)=0 | | 3/2x=3x | | |-5-1|-5=x | | 4+2/5r=-4 | | 0.8(x+0.5)+1.6x=0.5(x+1.1)-2.05 | | 6.8+1.4n=3.02 | | 0.05(x+50)-0.02(x-40)=3.6 | | -5/8x=-2/9 | | -16+6y=8 | | 18q-0.4q^2=200 | | 85x+20=270 | | 13=2f+5f=f= | | 6.3+1.5n=2.25 | | 4x+5(3x-13)=-8 |

Equations solver categories